
Overview: Software Reliability Growth Models
 Ms. Shailee Lohmor#, Dr. B B Sagar*

#Research Scholar, Bharathiar University, Coimbatore, India

*Assistant Professor, Birla Institute of Technology, Mesra- Ranchi, India

Abstract— An important attribute in software quality is
software reliability. Before software delivered in to market it
is thoroughly checked and errors are removed. Every software
industry wants to develop software that should be error free.
Reliability is the ability of the program to perform its required
functions, whereas availability is the degree to which a system
is operational and accessible when required for use. To the
user this means that a system is more reliable if it correctly
performs the tasks requested of it. A system is more available
if you can use in anytime you want. Over past thirty years,
many mathematical models have been proposed for estimation
of reliability growth of product during software development
process. Such models often referred as Software Reliability
Growth Models (SRGM). Multiple models for measuring the
reliability of the software and thus analysts are in a big chaos
to decide which model should be used and which one is best.
Thus, this review work depicts the overview and application of
the SRGMs.
Keywords— Software reliability, software reliability growth
model, Residual Errors, Reliability Factor, Time Between
Failure, Fault Count Model, Error Seeding Model, Input
Domain Model

I. INTRODUCTION

Reliability of software is possibility of no failure during a
given operating time in a specified environment. Software
reliability can be defined as the probability of failure-free
software operation for a specified period of time in a
specified environment [1],[2],[3],[4]. Software reliability
growth models are helping the software industries to
develop software which is error free and reliable. They try
to predict software reliability from test data. These models
try to show a relationship between fault detection data (i.e.
test data) and known mathematical functions such as
logarithmic or exponential functions. Software reliability
growth models (SRGM) captures failure behaviour of
software during testing and extrapolates it to determine its
behaviour during operation. Hence this category of models
uses failure data information and trends observed in the
failure data to derive reliability prediction. The SRGM
techniques are specifically useful for developers and testers
during testing and debugging phase. This study aims to
apply and compare the predictive capability of SRGM.

II. SOFTWARE RELIABILITY GROWTH MODELS

The software reliability growth is one of the fundamental
techniques to assess software reliability quantitatively [1].
SRGM takes failure specification as the input and provides
the reliability of the software as output [5]. The
specifications used must be the number of failures within an
interval and the time between two successive failures. The
factors on which the failures depend on are the failure
identification, removal and operational usage. The models

applicable to the assessment of software reliability are
called SRGM. SRGM are useful for estimating how
software reliability improves as faults are detected and
repaired. Software Reliability Models can be classified in
two ways, one is based on Failure History and the other one
is Data Requirements as depicted in the Fig 1:

Fig. 1 Classification of Software Reliability Growth Models

The focus of this review study is on the software reliability
model classification based on the failure history. The basic
data requirement under each model category is summarized
in Fig 2:

Fig. 2 Data requirements of the SRGM Models

1) Time between Failure Models
Under these models the study is based on the time between
failures. It works on the assumption that the time between
(i-1) th and ith failures is a random variable, which follows
a distribution whose parameters depend on the number of
faults remaining in the program during this interval.
Estimates of the parameters are obtained from the observed
values of time between failures, mean time to next failure,
etc., are then obtained from the fitted model.
Jelinski Moranda Model
Jelinski Moranda (JM) model is an exponential model but is
differs from geometric model in that the parameter used is
proportional to the remaining number of faults rather than
constant [6]. In JM model, we have N software faults at the
start of testing, each is independent of others and is equally
likely to cause a failure during testing. Fault removal
technique is applied to remove defects and no new defects
are introduced during debugging.

Shailee Lohmor et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5545-5547

www.ijcsit.com 5545

The basic assumptions of this model are:
1. There are a constant number of lines of code.
2. The operational profile of software is consistent.
3. Every fault has the same chance to be encountered

during software operation.
4. Fault detection rate remains constant over intervals

between fault occurrences.
5. Fault detection rate is proportional to current fault

content of software.
6. Each detected error is corrected without delay.
7. Failures are independent

MODEL FORM:
The number of predicted errors or the mean value function,
µ (tj), is given by

µ (tj) =1/ b (a – (j-1))
Where b is the roundness or shape factor (the rate at which
the failure rate decreases). a is the total number of software
errors, and tj is occurrence time of jth fault . The number of
Residual errors can be found out if the entire number of
bugs is detected and is calculated as:

ER=a- µ (tj)
The Reliability Factor is the measure of software reliability.
Its values vary between 0 and 1. If RF=1, then software
under consideration is perfect, however if RF=0, then the
software is highly vulnerable. When RF approaches close
to1 then the software can be considered as reliable.

RF=1-(ER/a)

2. Failure Count Models
The group refers to the models that are based on the
number of failures that occur in each time interval. The
random variable of interest is the number of faults (failures)
occurring during specified time intervals. It is assumed that
failure counts follow a known stochastic process. Usually a
Poisson distribution with a time dependent will be discrete
or continuous failure rate. The time can be calendar time or
CPU time Parameters of the failure rate can be estimated
from the observed values of failure counts and then the
Software reliability parameters are obtained from the
appropriate expression.

 Goel- Okumuto Non- homogeneous Poisson Process Model
In this model Goel-Okumoto [9] assumed that a software
system is subject to failure at random times caused by faults
present in the system. The Non Homogeneous Poisson
Process (NHPP) model is a Poisson type model that takes
the number of faults per unit of time as independent Poisson
random variables. The basic assumptions of this model are:

1. Cumulative number of failures by time t follows a
Poisson process.

2. Number of faults detected in each time interval is
independent for any finite collection of time
intervals.

3. Defects are repaired immediately when they are
discovered.

4. Defect repair is perfect. That is, no new defect is
introduced during test.

5. No new code is added to software during test.

6. Each unit of execution time during test is equally
likely to find a defect if the same code is executed
at the same time.

MODEL FORM:
The mean value function or the cumulative failure counts
must be of the form

µ(t)=a(1- e-bt)
for some constants b>0 and N>0. a is the expected total
number of faults to be eventually detected. In this model a
is the expected number of failures to be observed eventually
and b is the fault detection rate per fault.

3. Error or Fault Seeding Model
In the model of Error Seeding, a predefined number of
artificially generated errors are "incorporated" in the
program code. After that, test runs are used to detect the
errors and to examine the ratio between actual and artificial
errors based on the total number of detected errors.
Naturally, the artificially generated errors are not known to
the testers. In a first approach, the number of undetected
errors can be estimated as follows:

FU = FG · (FE / FEG)
Where FU refers to number of undetected errors, FG means
number of not seeded errors detected, FE refers number of
seeded errors and FEG as number of seeded errors detected.
By seeding errors to a document and then let the document
undergo testing of some kind it is possible to calculate how
many real errors that exist. According to these, an
estimation of the fault content of the program preceding to
seeding is obtained and used to assess software reliability
and other relevant measures. The basic assumptions of this
model are:

1. Seeded faults are randomly distributed in the
program.

2. Indigenous and seeded faults have equal
probabilities of being detected.

 Mills Hyper geometric model
Mills Hyper geometric model is one the model of the type
fault seeding [7]. This model is based on approach that
number of known faults be randomly seeded in the program
to be tested. The program is then tested for some interval of
time. Original indigenous fault count can be evaluated from
the numbers of indigenous and seeded faults uncovered
during the test by using the hyper geometric distribution.

4. Input - Domain Based Category
Input - domain based category includes models that assess
the reliability of a program when the test cases are sampled
randomly from well - known operational distribution of
inputs program. By finding all unique paths through the
program and then execute each and everyone it is possible
to guarantee that everything is tested. Nelson model is the
example of the type input domain [8]. The basic
assumptions of this model are as follows:

1. Input profile distribution is known.
2. Random testing is used.
3. Input domain can be partitioned into equivalent

classes.

Shailee Lohmor et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5545-5547

www.ijcsit.com 5546

Nelson model
In this model, reliability of software is calculated by
executing the software for a sample of n input. Inputs are
randomly selected for the input domain set S= (Si,
i=1,.....,N) and each Si is set of data values required for the
execution. Probability distribution Pi I ; the set (Pi, i = 1, N)
is the operational profile or simply the user input
distribution. And random sampling is done according to this
probability distribution. Suppose ne is the number of
execution that leads the execution to fail. Then estimation
of reliability R1 is: R1={1-ne/n} .

ANALYSIS
In order to analyze the applicability of the models The data
set used consists of 10 observations corresponding to times
between testing. The total expected error (EE) in the code
are 100. The roundness factor or the defect reduction rate is
considered to be between 0.03 and 0.05 (based on empirical
studies of several software’s). The value of the roundness
factor b depends upon the type of software and the
environment in which it is being used. The term MVF
refers to the mean value factor and RF to the reliability
factor.

 Table 1 Analysis results of Jelinski – Moranda

 and Goel- Okumuto NHPP Model

 Fig 3: Plot of Reliability factor in JM and GO-NHPP

Model

III. CONCLUSIONS

In this review work, effort made to provide an overview of
some existing Software reliability models with their
underlying assumptions. Further an experiment was made
to analyze the applicability of the models via an example.
On the basis of the assessment made by the data set used it
has been observed that as the number of residual errors
decreases the reliability factor increases and more the
reliability factor is close to 1, it is said to be highly reliable.
The assumptions made by the time between failure models
are hard to meet as compared to the fault counting models.

REFERENCES
[1] Michael R. Lyu, Handbook of Software Reliability Engineering,

IEEE Computer Society Press and McGraw-Hill Book Company ,
2005.

[2] Musa J.D., Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, McGraw-Hill, 1999.

[3] J.D. Musa, A. Iannino, and K. Okumoto, Software
Reliability:Measurement, Prediction, Application, McGraw-Hill
Publishing Company, New York, NY, 1987

[4] Kapur P.K and Garg, “ Cost reliability optimum release policies for a
software system with testing effort”, OR , Vol. 27, no 2 , pp 109-
116,1990.

[5] Dr. William H. Farr , “A survey of Reliability Modeling and
Estimation”, Sept1983.

[6] Quadri, S.M.K, Mohd. Razeef, Nesar Ahmad, “ A Comparative
Overview of Software Reliability Growth Models” in IJARCS, vol2,
No.1,pp 99-105, Jan-Feb 2011

[7] H. D. Mills, "On the statistical validation of computer programs,
"IBM Federal Syst. Div., Gaithersburg, MD, Rep. 72-6015, 1972

[8] Razeef Mohd, Mohsin Nazir, “ Software Reliability Growth Models:
Overview and Applications”, Journal of Emerging Trends in
Computing and Information Sciences VOL. 3, NO. 9, SEP 2012

[9] A L Goel, “A time dependent error detection
[10] rate model for software reliability and other performance measures,”

IEEE Trans. Rel, Vol R-28, pp.206-211, 1979

Shailee Lohmor et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5545-5547

www.ijcsit.com 5547

